
R A D I A T I O N  O F  D I F F U S E  I S O T H E R M A L  C A V I T I E S  

G. K.  K h o l o p o v  UDC 536.3 

General equations are  derived for the emissivi ty  distr ibution over the surface,  the angular 
cha rac te r i s t i c  of the emissivi ty,  and the hemispher ica l  emissivi ty  of diffuse isothermal  
cavit ies.  

Uniformly heated diffuse cavities a re  widely used as radiation sources  approximating absolute black- 
bodies. Accordingly,  there  is interest  in such charac te r i s t i cs  of the cavities as the emiss ivi ty  dis tr ibu-  
tion over  the surface,  the angular cha rac te r i s t i c  of the emissivi ty,  the hemispher ica l  emissivi ty,  etc. 
Below we derive general  equations for engineering calculations of these charac te r i s t i c s ,  and we give equa- 
tions for the sur face  emiss ivi ty  of severa l  widely used cavit ies.  

To calculate the distribution of the emiss ivi ty  over the surface  of the cavity we use the procedure  
used in [1] for the case  of the hemispher ica l  emissivi ty.  We assume that a radiative flux F(~) is incident 
on the cavity at some point ~. Then the flux emitted f rom the cavity as a resul t  of multiple reflect ions can 
be wri t ten as 

(1) 
Fern i (a) -~ F (~) [pn:(e) -k p=u~(~l) " - . . .  -}- pnu,,(a) + . . . l -  

Since there  is no absorption in the cavity in the ease 0 = 1, all the radiation entering the cavity must  exit 
through its aper ture ;  i .e . ,  we would have Femi(r = Fgr). Aecordingly,  the ser ies  

converges and has the finite sum 

, ,( ,)  --l~,,,(:) + . . .  + u,,(a) + . . .  
(2) 

• 
u,,(,) = (3) 

I. 

To simplify the p rob lem we a s s u m e  that  s e r i e s  (2) converges  according to a geomet r i c  p rogress ion ,  
i . e . ,  that  for all  n we can wr i te  

u, § = k : const (4) 

and 

• .,,(:) = u:(:)/(l - -  k). (5) 
n:= l 

This simplification does not introduce an e r r o r  unacceptable for  engineering calculations.  From (3) and (5) 
we find 

/e = =  1 --rq(~). (6) 

According to our assumption, the se r ies  in (1) also turns out to be a geomet r ic  progress ion .  Re-  
placing ui(r by Ucr, we write the emiss ivi ty  of point cr of the eavity according to Kirchhoff 's  law: 

e. = 1 Fern i(a) _ 1 - -  9 _ ~ (7) 
F(.)  l - - p ( 1 - - % )  e-l- (1--  e)% 

Using the eoneept of vec tor  solid angle, which is common in photometry  [2], we earl write the angu- 
lar  coefficient u~r as (Fig. 1) 
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Fig. 1. Cavity of a r b i t r a r y  shape.  

_ ~ cos 0d~o(0) n~(0) (8) 
/'/a 

2 
(0) 

Trea t ing  Eq. (7) as a f i r s t  approximat ion  in solving the in-  
t eg ra l  equation for  the emis s iv i ty  of an a r b i t r a r y  cavity,  

J ' dfla(s ) (9) 
c o :  e + (1 e) e s 

(s) 

we find in the second approximat ion  

[ ; ] % ~ (1 - -  & ua(t uo) 1 uflfljs) (10) 
~+(1  ~)Uo ~ ~).~ ~ ~ + ( 1 - ~ ) u ~  

(s) 

Equation (10) is m o r e  accura t e  than Eq. (7). 

Knowing the dis t r ibut ion of the emis s iv i ty  over  the cavity 
su r face  we can calcula te  the emiss ion  c h a r a c t e r i s t i c  of the eav-  

i ty .  For  this pu rpose  we mus t  ave r age  the emis s iv i ty  over  those  pa r t s  of the su r face  which a r e  observed  
through the cavi ty  ape r t u r e  f rom a given direct ion:  

j'I ~o(x, y, z) a~d~ 
(11) 

s (% ~) = ~o) 

(c) 

The coordinates  of the point if(x, y, z) onto which a point having coordinates  (~, 77) in the plane of the a p e r -  
tu re  is p ro jec ted  f rom this d i rec t ion a r e  found by solving the equations (Fig. 2) 

r  y. z ) =  0, (12) 

(x--.~) 2 -'- (Y ,1) ~ = z ~ tg ~ X, 

Y n==(x--~)tgr 

desc r ibes  the su r f ace  of the cavity;  the second equation desc r ibe s  where  the f i r s t  function, @(x, y, z) = 0, 
a cone whose ve r t ex  is at the point (~, ~?), whose axis is pa ra l l e l  to the 0z axis ,  and whose ve r t ex  half-  
angle is • and the th i rd  equation desc r ibes  a plane pass ing  through the point (~, ~) at an angle r with r e -  
spec t  to the x0z plane.  

Af ter  we de t e rmine  the c h a r a c t e r i s t i c  e(~a, • we can in tegra te  it over  solid angle to calcula te  the 
h e m i s p h e r i c a l  emiss iv i ty  e h. However ,  it is s i m p l e r  to calcula te  eh by using the genera l  equation [3] 

e ~(1 %)dA~.  (13) 
%-- A.(I - -  e) Q/ 

(s) 

i 
Fig. 2. Diagram illustrating the notation of the coor- 

dinates on a cavity of a rb i t ra ry  shape. 
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Fig. 3. Emiss iv i ty  of the lateral  surface  of cylindrical  cavities of 
various depths L as a function of l,  calculated f rom Eqs. (7) and (10). 
a) p = 0.1; b) 0.5; e) 0.9. The cavity depths L corresponding to the 
curves calculated f rom (10) a re  governed by the values of l at which 
the given curves a re  cut off (L = 0.5, 1, 2, 4, 6, 8, and 10, r e spec -  
tively). The dashed curves a re  calculated f rom Eq. (7) and the solid 
curves  f rom Eq. (10). 

Fig. 4. Emiss iv i ty  of cylindrical  cavit ies of various depths L as a 
function of the angle • (degrees) f rom the cyl inder  axis . p = 0.7. 

Substituting the value of e<r f rom (7) into this equation and using I uadAa = A 0 for the case  of a fiat aper -  

ture  [1], we find (sj 

~h--- 1 1 ~ u~ dA,, (14) 
A 0 ~ [e/(1 - -  e)] =+- u~ 

(. 

Equation (14) appears to be different in form from the equation derived in [1] on the basis of s imi la r  
assumptions,  

g 
~ =  , ( 15 )  

+ t(l --e)/Ao] S u~dA. 
(sj 

where the quantity (1/A 0) ~ u~dA~ is the average angular coefficient for the ent ire  cavity, but we should 
(s) 

not expect large numerical  differences between the resul ts  found f rom the two equations. 

Substituting the more  accura te  values of e(r given by (10) into (13), we find 

e h = e  t ! aTA. , ~/(1--e)-}-u~] " 
(s) 

Table 1 and Figs.  3 and 4 show the calculated emissivi ty  of a cylindrical  cavity having a flat bottom 
and a depth L, obtained for points on the bottom a distance r f rom the center  of the bottom and for points 
of the cyl indrical  surface  at a distance l f rom the open end of the cylinder (all dimensions a re  divided by 
the radius of the cylinder;  i . e . ,  this radius is set equal to 1). Table 1 shows the emissivi ty of the center  
of the bottom, el- = 0, that for points on the bottom near  the la teral  surface,  ~r = t, the average  emiss ivi ty  
of the bottom, e r ,  and the value of eh as functions of L for  the case e = p = 0.5. We see that Eqs. (10) and 
(14) yield resul ts  which a re  very  near ly  equal to the data of [3], obtained by solving integral equation (9) 
on a computer  by the method of success ive  approximations without any assumptions.  Although the resul ts  
found f rom Eq. (7) are  slightly less accura te ,  they differ much less f rom the exact values than do the r e -  
sults calculated from the Gouffe [4] and Buckley [6] equations and a re  suitable for pract ica l  est imates of 
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the  e m i s s i v i t y .  F i g u r e  3 shows  the  e m i s s i v i t y  of  the  c y l i n d r i c a l  s u r f a c e  of c a v i t i e s  of  v a r i o u s  dep ths  L 
as  a func t ion  of l f o r  t h r e e  v a l u e s  of p .  We  s e e  tha t  t he  d i s c r e p a n c y  b e t w e e n  the  r e s u l t s  c a l c u l a t e d  f r o m  
Eqs .  (7) and  (10) i s  g r e a t e s t  fo r  p o i n t s  on the  l a t e r a l  s u r f a c e  n e a r  t he  b o t t o m  of t he  c y l i n d e r .  T h i s  d i s -  
c r e p a n c y  d e c r e a s e s  wi th  d e c r e a s i n g  p .  F i g u r e  4 shows  the  e m i s s i v i t y  c h a r a c t e r i s t i c s  of c y l i n d r i c a l  
c a v i t i e s  in  the  c a s e  p~= 0.7.  Equa t ion  (7) was  u s e d  to  c a l c u l a t e  t h e s e  c h a r a c t e r i s t i c s .  We s e e  tha t  the  
e m i s s i v i t y  i n c r e a s e s  p r i m a r i l y  only in d i r e c t i o n s  n e a r  the  ax i s  of t he  c y l i n d e r  wi th  i n c r e a s i n g  c a v i t y  depth  
L.  

We t u r n  now to s o m e  equa t ions  which  can  be  u s e d  to c a l c u l a t e  the  a n g u l a r  c o e f f i c i e n t s  of s e v e r a l  of 
the  c a v i t i e s  which a r e  m o s t  c o m m o n l y  u s e d  in  p r a c t i c e .  T h e s e  s o l u t i o n s  w e r e  ob ta ined  on the  b a s i s  of the  
t h e o r y  of a r a d i a t i o n  f i e ld  [2]. The  a n g u l a r  coe f f i c i en t  was  found a s  the  r a t i o  of the  i l l u m i n a t i o n  p r o d u c e d  
a t  a g iven  po in t  by  the  g lowing  s u r f a c e  of an  a p e r t u r e  hav ing  a u n i f o r m  l u m i n o s i t y  to  the  m a g n i t u d e  of th i s  
h m i n o s i t y .  Mu l t i p ly ing  the  n u m e r a t o r  and  d e n o m i n a t o r  in  (8) by  the  b r i g h t n e s s  a t t r i b u t e d  to  the  a p e r t u r e ,  
we f ind 

and 

Bo.q~(o ) E~(O) 6~(0) cos 0 o (17) 

stBo Ro Ro 

1o 

F o r  po in t s  on the  b o t t o m  of the  c a v i t y  we have  

1 u,. = -~- [1 - -  (L 2 - -  1 ~- r2 ) /V (L  2 - -  1 +  r') 2 - 4 ] ] .  

F o r  an a x i a l  e l e m e n t  of t he  b o t t o m  of  the  c a v i t y  we have  r = 0, so  tha t  we can  w r i t e  

Ur=o = (L ~ + 1) -1 

A c i r c u l a r  c y l i n d e r  open at  one end; t he  no t a t i on  and the  r e s u l t s  fo r  t h i s  c a s e  a r e  g iven  above .  

s (L ~ + 1) 
Er=o 

eL 2 § 1 

T h e  a v e r a g e  v a h e  of  ~ r  fo r  the  e n t i r e  b o t t o m  i s  

= 1 - -  (L/2)(VL -g -t- 4 - -L ) .  

For points on the  c y l i n d r i c a l  s u r f a c e ,  

1 l S + 2 "~ 2 ;) = 
l (l 2 + 4) -'- (12 + 2)V-/~ +. 4" 

If  the  c y l i n d e r  i s  open a t  both  ends  (a c i r c u l a r  a p e r t u r e ) ,  

1 t _ L I  

2. A r e c t a n g u l a r  r e c e s s  of in f in i t e  l eng th  and a h a l f - w i d t h  of 1. 

F o r  the  l a t e r a l  f a c e s  of  the  r e c e s s ,  we have  

1 
u t = - ~  (1 - -  I / V l '  + 4), 

w h e r e  l i s  the  d i s t a n c e  f r o m  the  edge  of  the  r e c e s s  in to  i t s  i n t e r i o r  a long  a f ace .  

F o r  t he  b o t t o m  of t he  r e c e s s  we have  

+ 1 = T V 0  + + + L 

3. A t r u n c a t e d  cone  with  an  open s m a l l e r  b a s e ,  whose  r a d i u s  i s  s e t  equa l  to  1: 

V 4 ( l + l s i n ~ )  + l  2 - 2 s i n [ ~ - I  

a t =  t W 4 ( 1  4-/sin[B) -t- l 2 + 4 ( 1  + / s i n i g )  + I  ~ 

H e r e  the  d i s t a n c e  l i s  m e a s u r e d  f r o m  the  a p e r t u r e  a long  the  g e n e r a t r i x .  

4. A cone  with  an  open b a s e  of uni t  r a d i u s :  

(18) 

(19) 

(2o) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 
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V 4L (L - -  l) + L~l ~ + 2 --: Ll  

ut t V 4 L  (L - -  l) -t- L~l ~ + 4 (L - -  l) + L l  2 

(I is the d i s tance  f r o m  the b a s e  to the v e r t e x  of the cone along a gene ra t r i x ,  whose length is  L). 

5. A wedge-shaped  r e c e s s  of infinite length, whose half-width is  se t  equal to h 

u z -~- l--I L'(l'+4)--~Ll ' (28) 

where the distance I is measured from the rim of the recess to its edge along the face whose width is L. 

6. A sphere with a circular aperture. 

The angular coefficients (and thus the emissivity) are the same for all points of the sphere, given 
by 

(27) 

I (29) 
u = sin 2 -- (1 -T- ] / r ~  7.~). 

4 2 

Here  the minus sign is used if the pa r t  of the spher ica l  su r face  rep laced  by the ape r tu r e  is s m a l l e r  than a 
h e m i s p h e r e  (5 < ~/2), and the plus sign is used in the opposi te  ease  (5 > u/2).  

7. A cyl indr ical  r e c e s s  of infinite length (a c i r cu l a r  tube with a s l i t  along its  ent i re  length): 

u,~ =: sin - -  sin - -  ~ >/ . 
4 2 

The  ave rag e  angular  coefficient  for  the ent i re  sl i t  is ,  for  the d i rec t ion  ~b, 

u* = (4/5) sine 8~-c~ ( ~ <  ~t--b ) . 2  (31) 

Some of these  equations can be used to de te rmine  the angular  coefficients  for cavi t ies  of s eve r a l  
other  shapes .  For  example ,  Eq. (18) a lso  holds for  points on the flat  base  (or bottom) of a t runcated  cone, 
r e g a r d l e s s  of its d imens ions ,  and Eq. (25) can be used for points on the bot tom of a t rapezoida l  r e c e s s .  

We note in conclusion that by using the genera l  equations and method for  calculat ing the angular  co-  
efficients outlined above we can de t e rmine  the emiss ion  c h a r a c t e r i s t i c s  of diffuse i so the rma l  cavi t ies  of 
essent ia l ly  any shape.  

A o 

As 
Bo 
Es(0) 

s (0)  
k 

L 
l 

R0 
S 

Un(S) 

Us = u s ( s )  

x, y, z 

O~ 

N O T A T I O N  

is the a r ea  of the ape r t u r e  in the cavity;  
is  the su r f ace  a r e a  of the cavi ty  wal ls ;  
is  the br ightness  a t t r ibuted to the su r f ace  of the cavity in the aper tu re ;  
is the d i r ec t  i l luminat ion at point s due to the glowing a p e r t u r e  sur face ;  
is the magnitude of the light vec to r  at point s;  
i s  the index of the g e o m e t r i c  p r o g r e s s i o n  in the s e r i e s  cons t ruc ted  f r o m  the sequence 
of angular  coefficients;  
is  the p a r a m e t e r  cha rac te r i z ing  the cavi ty  depth; 
is the coordinate  m e a s u r e d  f r o m  the ape r tu re ,  giving the posi t ion of the point under  
considera t ion  on the l a te ra l  su r face  of the cavity;  
is  the coordinate  giving the posi t ion of the point on the bot tom (or base) of the cavity,  
m e a s u r e d  f rom the center  of the cavi ty  (the s y m m e t r y  axis or  the center) ;  
is the luminosi ty  a t t r ibuted to the cavity sur face ;  
is  an a r b i t r a r y  point on a cavi ty  wall; 
is  the angular  coefficient  of the n- th  ref lec t ion  for  s u r f a c e - a r e a  e lement  dA s, which 
includes the point s; 
is the angular  coefficient  for  s ingle (or f i rs t )  ref lect ion,  equal to the f rac t ion  of the 
rad ia t ive  flux emit ted f rom a cavity a f t e r  i ts  f i r s t  re f lec t ion  f r o m  element  dAs; 
a r e  the Car te s i an  coordinates  whose x0y plane is in the ape r tu r e  plane and whose 0z 
axis is pe rpendicu la r  to this plane,  d i rec ted  into the in te r io r  of the cavity;  
is the cent ra l  angle, m e a s u r e d  f rom the s y m m e t r y  plane of a cyl indr ical  r e c e s s  (half 
the angle 5) along the s ide of the s l i t  to the given point on the su r f ace  of the r e c e s s ;  
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fl is the angle between the axis and the g e n e r a t r i x  of a conical cavity;  
~/ is the ra t io  of the ape r tu r e  radius  to the radius  of a spher i ca l  cavity;  
5 is the angle at  which d i ame t r i ca l l y  opposi te  points of the cavi ty  a p e r t u r e  (or the edge 

of a s l i t  in a r e c e s s )  a r e  v i s ib le  f r o m  the cen te r  of a spher i ca l  cavi ty  (or f r o m  the 
axis of a cyl indr ica l  r e ce s s ) ;  

e = 1 --  p is the e m i s s i v i t y  of the m a t e r i a l  of the cavity wal ls ;  
e s is the emis s iv i ty  of a su r f ace  e lement  dAs; 
e(~, X) is the emiss iv i ty ,  ave raged  over  the ape r tu r e  su r face ,  in the d i rec t ion  specif ied by 

the angles  ~ and • 
e h is the h e m i s p h e r i c a l  emi s s iv i t y  of the cavi ty  ape r tu re ;  
0 is the angle between the axis of the solid angle d~s(0) and the no rma l  to the su r face  

at  point s;  
00 is the angle between the d i rec t ion  of the light vec to r ,  de te rmined  by the br ight  a p e r -  

tu re ,  and the no rma l  to the su r face  at point s; 
and ~ a r e  the coordinates  of an a r b i t r a r y  point in the plane of the a p e r t u r e  and within i ts  

boundary;  
p is the re f lec t ion  coeff icient  of the ma t e r i a l  of the cavity walls;  

is the given point on the su r f ace  of the cavi ty  walls;  
is the angle between the x0z plane and the plane pass ing  through the 0z axis and the 
given obse rva t ion  direct ion;  

X is the angle between the observa t ion  d i rec t ion  and the 0z axis;  
r is the dihedral  angle with edge at the axis of a cyl indr ical  r e c e s s ,  m e a s u r e d  f rom the 

s y m m e t r y  plane of the r e c e s s ;  
d~s(0) is the so l id -ang le  e lement  subtended by s u r f a c e - a r e a  e lement  dA 0 in the ape r tu r e  at 

point s; 
d~,2s(0) is  the pro jec t ion  of the so l id-angle  vec to r  d~s(0) onto the no rma l  to the su r f ace  at  

point s [2]. 

The symbols  i' and y denote in tegra t ions  over  the a p e r t u r e  su r f ace  and over  the su r f aces  of the cavi ty  
(O} (s) 

walls ,  r e spec t ive ly ;  the r ight -hand subsc r ip t s  on ~ and ~ give the point at the ve r t ex  of the solid angle; 
and the subsc r ip t s  in p a r e n t h e s e s  co r r e spond  tO the su r f ace  e lement  insc r ibed  in the given solid angle.  
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